/** * Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal <david.sehnal@gmail.com> * @author Alexander Rose <alexander.rose@weirdbyte.de> */ /* * This code has been modified from https://github.com/toji/gl-matrix/, * copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: */ import { EPSILON, equalEps } from './common' import Vec3 from './vec3'; import Quat from './quat'; import { degToRad } from '../../misc'; interface Mat4 extends Array<number> { [d: number]: number, '@type': 'mat4', length: 16 } interface ReadonlyMat4 extends Array<number> { readonly [d: number]: number, '@type': 'mat4', length: 16 } function Mat4() { return Mat4.zero(); } /** * Stores a 4x4 matrix in a column major (j * 4 + i indexing) format. */ namespace Mat4 { export function zero(): Mat4 { // force double backing array by 0.1. const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; ret[0] = 0.0; return ret as any; } export function identity(): Mat4 { const out = zero(); out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function setIdentity(mat: Mat4): Mat4 { mat[0] = 1; mat[1] = 0; mat[2] = 0; mat[3] = 0; mat[4] = 0; mat[5] = 1; mat[6] = 0; mat[7] = 0; mat[8] = 0; mat[9] = 0; mat[10] = 1; mat[11] = 0; mat[12] = 0; mat[13] = 0; mat[14] = 0; mat[15] = 1; return mat; } export function setZero(mat: Mat4): Mat4 { for (let i = 0; i < 16; i++) mat[i] = 0; return mat; } export function ofRows(rows: number[][]): Mat4 { const out = zero(); for (let i = 0; i < 4; i++) { const r = rows[i]; for (let j = 0; j < 4; j++) { out[4 * j + i] = r[j]; } } return out; } const _id = identity(); export function isIdentity(m: Mat4, eps?: number) { return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON.Value : eps); } export function hasNaN(m: Mat4) { for (let i = 0; i < 16; i++) if (isNaN(m[i])) return true return false } export function areEqual(a: Mat4, b: Mat4, eps: number) { for (let i = 0; i < 16; i++) { if (Math.abs(a[i] - b[i]) > eps) return false; } return true; } export function setValue(a: Mat4, i: number, j: number, value: number) { a[4 * j + i] = value; } export function toArray(a: Mat4, out: Helpers.NumberArray, offset: number) { out[offset + 0] = a[0]; out[offset + 1] = a[1]; out[offset + 2] = a[2]; out[offset + 3] = a[3]; out[offset + 4] = a[4]; out[offset + 5] = a[5]; out[offset + 6] = a[6]; out[offset + 7] = a[7]; out[offset + 8] = a[8]; out[offset + 9] = a[9]; out[offset + 10] = a[10]; out[offset + 11] = a[11]; out[offset + 12] = a[12]; out[offset + 13] = a[13]; out[offset + 14] = a[14]; out[offset + 15] = a[15]; } export function fromArray(a: Mat4, array: Helpers.NumberArray, offset: number) { a[0] = array[offset + 0] a[1] = array[offset + 1] a[2] = array[offset + 2] a[3] = array[offset + 3] a[4] = array[offset + 4] a[5] = array[offset + 5] a[6] = array[offset + 6] a[7] = array[offset + 7] a[8] = array[offset + 8] a[9] = array[offset + 9] a[10] = array[offset + 10] a[11] = array[offset + 11] a[12] = array[offset + 12] a[13] = array[offset + 13] a[14] = array[offset + 14] a[15] = array[offset + 15] return a } export function copy(out: Mat4, a: Mat4) { out[0] = a[0]; out[1] = a[1]; out[2] = a[2]; out[3] = a[3]; out[4] = a[4]; out[5] = a[5]; out[6] = a[6]; out[7] = a[7]; out[8] = a[8]; out[9] = a[9]; out[10] = a[10]; out[11] = a[11]; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function clone(a: Mat4) { return Mat4.copy(Mat4.zero(), a); } /** * Returns the translation vector component of a transformation matrix. */ export function getTranslation(out: Vec3, mat: Mat4) { out[0] = mat[12]; out[1] = mat[13]; out[2] = mat[14]; return out; } /** * Returns the scaling factor component of a transformation matrix. */ export function getScaling(out: Vec3, mat: Mat4) { let m11 = mat[0]; let m12 = mat[1]; let m13 = mat[2]; let m21 = mat[4]; let m22 = mat[5]; let m23 = mat[6]; let m31 = mat[8]; let m32 = mat[9]; let m33 = mat[10]; out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); return out; } /** * Returns a quaternion representing the rotational component of a transformation matrix. */ export function getRotation(out: Quat, mat: Mat4) { // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm let trace = mat[0] + mat[5] + mat[10]; let S = 0; if (trace > 0) { S = Math.sqrt(trace + 1.0) * 2; out[3] = 0.25 * S; out[0] = (mat[6] - mat[9]) / S; out[1] = (mat[8] - mat[2]) / S; out[2] = (mat[1] - mat[4]) / S; } else if ((mat[0] > mat[5]) && (mat[0] > mat[10])) { S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2; out[3] = (mat[6] - mat[9]) / S; out[0] = 0.25 * S; out[1] = (mat[1] + mat[4]) / S; out[2] = (mat[8] + mat[2]) / S; } else if (mat[5] > mat[10]) { S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2; out[3] = (mat[8] - mat[2]) / S; out[0] = (mat[1] + mat[4]) / S; out[1] = 0.25 * S; out[2] = (mat[6] + mat[9]) / S; } else { S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2; out[3] = (mat[1] - mat[4]) / S; out[0] = (mat[8] + mat[2]) / S; out[1] = (mat[6] + mat[9]) / S; out[2] = 0.25 * S; } return out; } export function transpose(out: Mat4, a: Mat4) { // If we are transposing ourselves we can skip a few steps but have to cache some values if (out === a) { const a01 = a[1], a02 = a[2], a03 = a[3]; const a12 = a[6], a13 = a[7]; const a23 = a[11]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a01; out[6] = a[9]; out[7] = a[13]; out[8] = a02; out[9] = a12; out[11] = a[14]; out[12] = a03; out[13] = a13; out[14] = a23; } else { out[0] = a[0]; out[1] = a[4]; out[2] = a[8]; out[3] = a[12]; out[4] = a[1]; out[5] = a[5]; out[6] = a[9]; out[7] = a[13]; out[8] = a[2]; out[9] = a[6]; out[10] = a[10]; out[11] = a[14]; out[12] = a[3]; out[13] = a[7]; out[14] = a[11]; out[15] = a[15]; } return out; } export function invert(out: Mat4, a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; if (!det) { console.warn('non-invertible matrix.', a); return out; } det = 1.0 / det; out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; return out; } export function mul(out: Mat4, a: Mat4, b: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; // Cache only the current line of the second matrix let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; return out; } export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) { return mul(out, mul(out, a, b), c); } /** Translate a Mat4 by the given Vec3 */ export function translate(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; let a00: number, a01: number, a02: number, a03: number, a10: number, a11: number, a12: number, a13: number, a20: number, a21: number, a22: number, a23: number; if (a === out) { out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; } else { a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; out[12] = a00 * x + a10 * y + a20 * z + a[12]; out[13] = a01 * x + a11 * y + a21 * z + a[13]; out[14] = a02 * x + a12 * y + a22 * z + a[14]; out[15] = a03 * x + a13 * y + a23 * z + a[15]; } return out; } export function fromTranslation(out: Mat4, v: Vec3) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = 1; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 1; out[11] = 0; out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; out[15] = 1; return out; } export function setTranslation(out: Mat4, v: Vec3) { out[12] = v[0]; out[13] = v[1]; out[14] = v[2]; return out; } /** * Sets the specified quaternion with values corresponding to the given * axes. Each axis is a vec3 and is expected to be unit length and * perpendicular to all other specified axes. */ export function setAxes(out: Mat4, view: Vec3, right: Vec3, up: Vec3) { out[0] = right[0]; out[4] = right[1]; out[8] = right[2]; out[1] = up[0]; out[5] = up[1]; out[9] = up[2]; out[2] = view[0]; out[6] = view[1]; out[10] = view[2]; return out } export function rotate(out: Mat4, a: Mat4, rad: number, axis: Vec3) { let x = axis[0], y = axis[1], z = axis[2], len = Math.sqrt(x * x + y * y + z * z), s, c, t, a00, a01, a02, a03, a10, a11, a12, a13, a20, a21, a22, a23, b00, b01, b02, b10, b11, b12, b20, b21, b22; if (Math.abs(len) < EPSILON.Value) { return Mat4.identity(); } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; // Construct the elements of the rotation matrix b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s; b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s; b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c; // Perform rotation-specific matrix multiplication out[0] = a00 * b00 + a10 * b01 + a20 * b02; out[1] = a01 * b00 + a11 * b01 + a21 * b02; out[2] = a02 * b00 + a12 * b01 + a22 * b02; out[3] = a03 * b00 + a13 * b01 + a23 * b02; out[4] = a00 * b10 + a10 * b11 + a20 * b12; out[5] = a01 * b10 + a11 * b11 + a21 * b12; out[6] = a02 * b10 + a12 * b11 + a22 * b12; out[7] = a03 * b10 + a13 * b11 + a23 * b12; out[8] = a00 * b20 + a10 * b21 + a20 * b22; out[9] = a01 * b20 + a11 * b21 + a21 * b22; out[10] = a02 * b20 + a12 * b21 + a22 * b22; out[11] = a03 * b20 + a13 * b21 + a23 * b22; if (a !== out) { // If the source and destination differ, copy the unchanged last row out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; } return out; } export function fromRotation(out: Mat4, rad: number, axis: Vec3) { let x = axis[0], y = axis[1], z = axis[2], len = Math.sqrt(x * x + y * y + z * z), s, c, t; if (Math.abs(len) < EPSILON.Value) { return setIdentity(out); } len = 1 / len; x *= len; y *= len; z *= len; s = Math.sin(rad); c = Math.cos(rad); t = 1 - c; // Perform rotation-specific matrix multiplication out[0] = x * x * t + c; out[1] = y * x * t + z * s; out[2] = z * x * t - y * s; out[3] = 0; out[4] = x * y * t - z * s; out[5] = y * y * t + c; out[6] = z * y * t + x * s; out[7] = 0; out[8] = x * z * t + y * s; out[9] = y * z * t - x * s; out[10] = z * z * t + c; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function scale(out: Mat4, a: Mat4, v: Vec3) { const x = v[0], y = v[1], z = v[2]; out[0] = a[0] * x; out[1] = a[1] * x; out[2] = a[2] * x; out[3] = a[3] * x; out[4] = a[4] * y; out[5] = a[5] * y; out[6] = a[6] * y; out[7] = a[7] * y; out[8] = a[8] * z; out[9] = a[9] * z; out[10] = a[10] * z; out[11] = a[11] * z; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function scaleUniformly(out: Mat4, a: Mat4, scale: number) { out[0] = a[0] * scale; out[1] = a[1] * scale; out[2] = a[2] * scale; out[3] = a[3] * scale; out[4] = a[4] * scale; out[5] = a[5] * scale; out[6] = a[6] * scale; out[7] = a[7] * scale; out[8] = a[8] * scale; out[9] = a[9] * scale; out[10] = a[10] * scale; out[11] = a[11] * scale; out[12] = a[12]; out[13] = a[13]; out[14] = a[14]; out[15] = a[15]; return out; } export function fromScaling(out: Mat4, v: Vec3) { out[0] = v[0]; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = v[1]; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = v[2]; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function fromUniformScaling(out: Mat4, scale: number) { out[0] = scale; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = scale; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = scale; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } export function makeTable(m: Mat4) { let ret = ''; for (let i = 0; i < 4; i++) { for (let j = 0; j < 4; j++) { ret += m[4 * j + i].toString(); if (j < 3) ret += ' '; } if (i < 3) ret += '\n'; } return ret; } export function determinant(a: Mat4) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], b00 = a00 * a11 - a01 * a10, b01 = a00 * a12 - a02 * a10, b02 = a00 * a13 - a03 * a10, b03 = a01 * a12 - a02 * a11, b04 = a01 * a13 - a03 * a11, b05 = a02 * a13 - a03 * a12, b06 = a20 * a31 - a21 * a30, b07 = a20 * a32 - a22 * a30, b08 = a20 * a33 - a23 * a30, b09 = a21 * a32 - a22 * a31, b10 = a21 * a33 - a23 * a31, b11 = a22 * a33 - a23 * a32; // Calculate the determinant return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; } /** * Check if the matrix has the form * [ Rotation Translation ] * [ 0 1 ] */ export function isRotationAndTranslation(a: Mat4, eps?: number) { return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON.Value) } function _isRotationAndTranslation(a: Mat4, eps: number) { const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], /* a30 = a[12], a31 = a[13], a32 = a[14],*/ a33 = a[15]; if (!equalEps(a33, 1, eps) || !equalEps(a03, 0, eps) || !equalEps(a13, 0, eps) || !equalEps(a23, 0, eps)) { return false; } const det3x3 = a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20); if (!equalEps(det3x3, 1, eps)) { return false; } return true; } export function fromQuat(out: Mat4, q: Quat) { const x = q[0], y = q[1], z = q[2], w = q[3]; const x2 = x + x; const y2 = y + y; const z2 = z + z; const xx = x * x2; const yx = y * x2; const yy = y * y2; const zx = z * x2; const zy = z * y2; const zz = z * z2; const wx = w * x2; const wy = w * y2; const wz = w * z2; out[0] = 1 - yy - zz; out[1] = yx + wz; out[2] = zx - wy; out[3] = 0; out[4] = yx - wz; out[5] = 1 - xx - zz; out[6] = zy + wx; out[7] = 0; out[8] = zx + wy; out[9] = zy - wx; out[10] = 1 - xx - yy; out[11] = 0; out[12] = 0; out[13] = 0; out[14] = 0; out[15] = 1; return out; } /** * Generates a frustum matrix with the given bounds */ export function frustum(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) { const rl = 1 / (right - left); const tb = 1 / (top - bottom); const nf = 1 / (near - far); out[0] = (near * 2) * rl; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = (near * 2) * tb; out[6] = 0; out[7] = 0; out[8] = (right + left) * rl; out[9] = (top + bottom) * tb; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (far * near * 2) * nf; out[15] = 0; return out; } /** * Generates a perspective projection matrix with the given bounds */ export function perspective(out: Mat4, fovy: number, aspect: number, near: number, far: number) { const f = 1.0 / Math.tan(fovy / 2); const nf = 1 / (near - far); out[0] = f / aspect; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = f; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = (far + near) * nf; out[11] = -1; out[12] = 0; out[13] = 0; out[14] = (2 * far * near) * nf; out[15] = 0; return out; } /** * Generates a orthogonal projection matrix with the given bounds */ export function ortho(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) { const lr = 1 / (left - right); const bt = 1 / (bottom - top); const nf = 1 / (near - far); out[0] = -2 * lr; out[1] = 0; out[2] = 0; out[3] = 0; out[4] = 0; out[5] = -2 * bt; out[6] = 0; out[7] = 0; out[8] = 0; out[9] = 0; out[10] = 2 * nf; out[11] = 0; out[12] = (left + right) * lr; out[13] = (top + bottom) * bt; out[14] = (far + near) * nf; out[15] = 1; return out; } /** * Generates a look-at matrix with the given eye position, focal point, and up axis */ export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) { let x0, x1, x2, y0, y1, y2, z0, z1, z2, len; const eyex = eye[0]; const eyey = eye[1]; const eyez = eye[2]; const upx = up[0]; const upy = up[1]; const upz = up[2]; const centerx = center[0]; const centery = center[1]; const centerz = center[2]; if (Math.abs(eyex - centerx) < EPSILON.Value && Math.abs(eyey - centery) < EPSILON.Value && Math.abs(eyez - centerz) < EPSILON.Value ) { return setIdentity(out); } z0 = eyex - centerx; z1 = eyey - centery; z2 = eyez - centerz; len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); z0 *= len; z1 *= len; z2 *= len; x0 = upy * z2 - upz * z1; x1 = upz * z0 - upx * z2; x2 = upx * z1 - upy * z0; len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); if (!len) { x0 = 0; x1 = 0; x2 = 0; } else { len = 1 / len; x0 *= len; x1 *= len; x2 *= len; } y0 = z1 * x2 - z2 * x1; y1 = z2 * x0 - z0 * x2; y2 = z0 * x1 - z1 * x0; len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); if (!len) { y0 = 0; y1 = 0; y2 = 0; } else { len = 1 / len; y0 *= len; y1 *= len; y2 *= len; } out[0] = x0; out[1] = y0; out[2] = z0; out[3] = 0; out[4] = x1; out[5] = y1; out[6] = z1; out[7] = 0; out[8] = x2; out[9] = y2; out[10] = z2; out[11] = 0; out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); out[15] = 1; return out; } /** * Generates a matrix that makes something look at something else. */ export function targetTo(out: Mat4, eye: Vec3, target: Vec3, up: Vec3) { const eyex = eye[0], eyey = eye[1], eyez = eye[2], upx = up[0], upy = up[1], upz = up[2]; let z0 = eyex - target[0], z1 = eyey - target[1], z2 = eyez - target[2]; let len = z0*z0 + z1*z1 + z2*z2; if (len > 0) { len = 1 / Math.sqrt(len); z0 *= len; z1 *= len; z2 *= len; } let x0 = upy * z2 - upz * z1, x1 = upz * z0 - upx * z2, x2 = upx * z1 - upy * z0; len = x0*x0 + x1*x1 + x2*x2; if (len > 0) { len = 1 / Math.sqrt(len); x0 *= len; x1 *= len; x2 *= len; } out[0] = x0; out[1] = x1; out[2] = x2; out[3] = 0; out[4] = z1 * x2 - z2 * x1; out[5] = z2 * x0 - z0 * x2; out[6] = z0 * x1 - z1 * x0; out[7] = 0; out[8] = z0; out[9] = z1; out[10] = z2; out[11] = 0; out[12] = eyex; out[13] = eyey; out[14] = eyez; out[15] = 1; return out; } /** * Perm is 0-indexed permutation */ export function fromPermutation(out: Mat4, perm: number[]) { setZero(out); for (let i = 0; i < 4; i++) { const p = perm[i]; setValue(out, i, p, 1); } return out; } export function getMaxScaleOnAxis(m: Mat4) { const scaleXSq = m[0] * m[0] + m[1] * m[1] + m[2] * m[2] const scaleYSq = m[4] * m[4] + m[5] * m[5] + m[6] * m[6] const scaleZSq = m[8] * m[8] + m[9] * m[9] + m[10] * m[10] return Math.sqrt(Math.max(scaleXSq, scaleYSq, scaleZSq)) } /** Rotation matrix for 90deg around x-axis */ export const rotX90: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(90), Vec3.create(1, 0, 0)) /** Rotation matrix for 180deg around x-axis */ export const rotX180: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(180), Vec3.create(1, 0, 0)) /** Rotation matrix for 90deg around y-axis */ export const rotY90: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(90), Vec3.create(0, 1, 0)) /** Rotation matrix for 180deg around y-axis */ export const rotY180: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(180), Vec3.create(0, 1, 0)) /** Rotation matrix for 90deg around z-axis */ export const rotZ90: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(90), Vec3.create(0, 0, 1)) /** Rotation matrix for 180deg around z-axis */ export const rotZ180: ReadonlyMat4 = Mat4.fromRotation(Mat4.identity(), degToRad(180), Vec3.create(0, 0, 1)) /** Rotation matrix for 90deg around first x-axis and then y-axis */ export const rotXY90: ReadonlyMat4 = Mat4.mul(Mat4.identity(), rotX90, rotY90) /** Rotation matrix for 90deg around first z-axis and then y-axis */ export const rotZY90: ReadonlyMat4 = Mat4.mul(Mat4.identity(), rotZ90, rotY90) /** Rotation matrix for 90deg around first z-axis and then y-axis and then z-axis */ export const rotZYZ90: ReadonlyMat4 = Mat4.mul(Mat4.identity(), rotZY90, rotZ90) /** Rotation matrix for 90deg around first z-axis and then 180deg around x-axis */ export const rotZ90X180: ReadonlyMat4 = Mat4.mul(Mat4.identity(), rotZ90, rotX180) /** Rotation matrix for 90deg around first y-axis and then 180deg around z-axis */ export const rotY90Z180: ReadonlyMat4 = Mat4.mul(Mat4.identity(), rotY90, rotZ180) } export default Mat4