Newer
Older
/**
* Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author David Sehnal <david.sehnal@gmail.com>
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*/
/*
* This code has been modified from https://github.com/toji/gl-matrix/,
* copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*/
import { EPSILON, equalEps } from './common'
import Vec3 from './vec3';
import Quat from './quat';
import { NumberArray } from 'mol-util/type-helpers';
interface Mat4 extends Array<number> { [d: number]: number, '@type': 'mat4', length: 16 }
interface ReadonlyMat4 extends Array<number> { readonly [d: number]: number, '@type': 'mat4', length: 16 }
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/**
* Stores a 4x4 matrix in a column major (j * 4 + i indexing) format.
*/
namespace Mat4 {
export function zero(): Mat4 {
// force double backing array by 0.1.
const ret = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
ret[0] = 0.0;
return ret as any;
}
export function identity(): Mat4 {
const out = zero();
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
export function setIdentity(mat: Mat4): Mat4 {
mat[0] = 1;
mat[1] = 0;
mat[2] = 0;
mat[3] = 0;
mat[4] = 0;
mat[5] = 1;
mat[6] = 0;
mat[7] = 0;
mat[8] = 0;
mat[9] = 0;
mat[10] = 1;
mat[11] = 0;
mat[12] = 0;
mat[13] = 0;
mat[14] = 0;
mat[15] = 1;
return mat;
}
export function setZero(mat: Mat4): Mat4 {
for (let i = 0; i < 16; i++) mat[i] = 0;
return mat;
}
export function ofRows(rows: number[][]): Mat4 {
const out = zero();
for (let i = 0; i < 4; i++) {
const r = rows[i];
for (let j = 0; j < 4; j++) {
out[4 * j + i] = r[j];
}
}
return out;
}
const _id = identity();
export function isIdentity(m: Mat4, eps?: number) {
return areEqual(m, _id, typeof eps === 'undefined' ? EPSILON.Value : eps);
}
export function hasNaN(m: Mat4) {
for (let i = 0; i < 16; i++) if (isNaN(m[i])) return true
return false
}
export function areEqual(a: Mat4, b: Mat4, eps: number) {
for (let i = 0; i < 16; i++) {
if (Math.abs(a[i] - b[i]) > eps) return false;
}
return true;
}
export function setValue(a: Mat4, i: number, j: number, value: number) {
a[4 * j + i] = value;
}
export function getValue(a: Mat4, i: number, j: number) {
return a[4 * j + i];
}
export function toArray(a: Mat4, out: NumberArray, offset: number) {
out[offset + 0] = a[0];
out[offset + 1] = a[1];
out[offset + 2] = a[2];
out[offset + 3] = a[3];
out[offset + 4] = a[4];
out[offset + 5] = a[5];
out[offset + 6] = a[6];
out[offset + 7] = a[7];
out[offset + 8] = a[8];
out[offset + 9] = a[9];
out[offset + 10] = a[10];
out[offset + 11] = a[11];
out[offset + 12] = a[12];
out[offset + 13] = a[13];
out[offset + 14] = a[14];
out[offset + 15] = a[15];
}
export function fromArray(a: Mat4, array: NumberArray, offset: number) {
a[0] = array[offset + 0]
a[1] = array[offset + 1]
a[2] = array[offset + 2]
a[3] = array[offset + 3]
a[4] = array[offset + 4]
a[5] = array[offset + 5]
a[6] = array[offset + 6]
a[7] = array[offset + 7]
a[8] = array[offset + 8]
a[9] = array[offset + 9]
a[10] = array[offset + 10]
a[11] = array[offset + 11]
a[12] = array[offset + 12]
a[13] = array[offset + 13]
a[14] = array[offset + 14]
a[15] = array[offset + 15]
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
}
export function copy(out: Mat4, a: Mat4) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[3] = a[3];
out[4] = a[4];
out[5] = a[5];
out[6] = a[6];
out[7] = a[7];
out[8] = a[8];
out[9] = a[9];
out[10] = a[10];
out[11] = a[11];
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
export function clone(a: Mat4) {
return Mat4.copy(Mat4.zero(), a);
}
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/**
* Returns the translation vector component of a transformation matrix.
*/
export function getTranslation(out: Vec3, mat: Mat4) {
out[0] = mat[12];
out[1] = mat[13];
out[2] = mat[14];
return out;
}
/**
* Returns the scaling factor component of a transformation matrix.
*/
export function getScaling(out: Vec3, mat: Mat4) {
let m11 = mat[0];
let m12 = mat[1];
let m13 = mat[2];
let m21 = mat[4];
let m22 = mat[5];
let m23 = mat[6];
let m31 = mat[8];
let m32 = mat[9];
let m33 = mat[10];
out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13);
out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23);
out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33);
return out;
}
/**
* Returns a quaternion representing the rotational component of a transformation matrix.
*/
export function getRotation(out: Quat, mat: Mat4) {
// Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
let trace = mat[0] + mat[5] + mat[10];
let S = 0;
if (trace > 0) {
S = Math.sqrt(trace + 1.0) * 2;
out[3] = 0.25 * S;
out[0] = (mat[6] - mat[9]) / S;
out[1] = (mat[8] - mat[2]) / S;
out[2] = (mat[1] - mat[4]) / S;
} else if ((mat[0] > mat[5]) && (mat[0] > mat[10])) {
S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2;
out[3] = (mat[6] - mat[9]) / S;
out[0] = 0.25 * S;
out[1] = (mat[1] + mat[4]) / S;
out[2] = (mat[8] + mat[2]) / S;
} else if (mat[5] > mat[10]) {
S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2;
out[3] = (mat[8] - mat[2]) / S;
out[0] = (mat[1] + mat[4]) / S;
out[1] = 0.25 * S;
out[2] = (mat[6] + mat[9]) / S;
} else {
S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2;
out[3] = (mat[1] - mat[4]) / S;
out[0] = (mat[8] + mat[2]) / S;
out[1] = (mat[6] + mat[9]) / S;
out[2] = 0.25 * S;
}
return out;
}
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
export function transpose(out: Mat4, a: Mat4) {
// If we are transposing ourselves we can skip a few steps but have to cache some values
if (out === a) {
const a01 = a[1], a02 = a[2], a03 = a[3];
const a12 = a[6], a13 = a[7];
const a23 = a[11];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a01;
out[6] = a[9];
out[7] = a[13];
out[8] = a02;
out[9] = a12;
out[11] = a[14];
out[12] = a03;
out[13] = a13;
out[14] = a23;
} else {
out[0] = a[0];
out[1] = a[4];
out[2] = a[8];
out[3] = a[12];
out[4] = a[1];
out[5] = a[5];
out[6] = a[9];
out[7] = a[13];
out[8] = a[2];
out[9] = a[6];
out[10] = a[10];
out[11] = a[14];
out[12] = a[3];
out[13] = a[7];
out[14] = a[11];
out[15] = a[15];
}
return out;
}
export function invert(out: Mat4, a: Mat4) {
const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
b00 = a00 * a11 - a01 * a10,
b01 = a00 * a12 - a02 * a10,
b02 = a00 * a13 - a03 * a10,
b03 = a01 * a12 - a02 * a11,
b04 = a01 * a13 - a03 * a11,
b05 = a02 * a13 - a03 * a12,
b06 = a20 * a31 - a21 * a30,
b07 = a20 * a32 - a22 * a30,
b08 = a20 * a33 - a23 * a30,
b09 = a21 * a32 - a22 * a31,
b10 = a21 * a33 - a23 * a31,
b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
console.warn('non-invertible matrix.', a);
return out;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
return out;
}
export function mul(out: Mat4, a: Mat4, b: Mat4) {
const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
// Cache only the current line of the second matrix
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
return out;
}
/**
* Like `mul` but with offsets into arrays
*/
export function mulOffset(out: NumberArray, a: NumberArray, b: NumberArray, oOut: number, oA: number, oB: number) {
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
const a00 = a[0 + oA], a01 = a[1 + oA], a02 = a[2 + oA], a03 = a[3 + oA],
a10 = a[4 + oA], a11 = a[5 + oA], a12 = a[6 + oA], a13 = a[7 + oA],
a20 = a[8 + oA], a21 = a[9 + oA], a22 = a[10 + oA], a23 = a[11 + oA],
a30 = a[12 + oA], a31 = a[13 + oA], a32 = a[14 + oA], a33 = a[15 + oA];
// Cache only the current line of the second matrix
let b0 = b[0 + oB], b1 = b[1 + oB], b2 = b[2 + oB], b3 = b[3 + oB];
out[0 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[1 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[2 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[3 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[4 + oB]; b1 = b[5 + oB]; b2 = b[6 + oB]; b3 = b[7 + oB];
out[4 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[5 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[6 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[7 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[8 + oB]; b1 = b[9 + oB]; b2 = b[10 + oB]; b3 = b[11 + oB];
out[8 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[9 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[10 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[11 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
b0 = b[12 + oB]; b1 = b[13 + oB]; b2 = b[14 + oB]; b3 = b[15 + oB];
out[12 + oOut] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30;
out[13 + oOut] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31;
out[14 + oOut] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32;
out[15 + oOut] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33;
return out;
}
export function mul3(out: Mat4, a: Mat4, b: Mat4, c: Mat4) {
return mul(out, mul(out, a, b), c);
}
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
export function translate(out: Mat4, a: Mat4, v: Vec3) {
const x = v[0], y = v[1], z = v[2];
let a00: number, a01: number, a02: number, a03: number,
a10: number, a11: number, a12: number, a13: number,
a20: number, a21: number, a22: number, a23: number;
if (a === out) {
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
} else {
a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
out[12] = a00 * x + a10 * y + a20 * z + a[12];
out[13] = a01 * x + a11 * y + a21 * z + a[13];
out[14] = a02 * x + a12 * y + a22 * z + a[14];
out[15] = a03 * x + a13 * y + a23 * z + a[15];
}
return out;
}
export function fromTranslation(out: Mat4, v: Vec3) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
export function setTranslation(out: Mat4, v: Vec3) {
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
return out;
}
/**
* Sets the specified quaternion with values corresponding to the given
* axes. Each axis is a vec3 and is expected to be unit length and
* perpendicular to all other specified axes.
*/
export function setAxes(out: Mat4, view: Vec3, right: Vec3, up: Vec3) {
out[0] = right[0];
out[4] = right[1];
out[8] = right[2];
out[1] = up[0];
out[5] = up[1];
out[9] = up[2];
out[2] = view[0];
out[6] = view[1];
out[10] = view[2];
return out
}
export function rotate(out: Mat4, a: Mat4, rad: number, axis: Vec3) {
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
let x = axis[0], y = axis[1], z = axis[2],
len = Math.sqrt(x * x + y * y + z * z),
s, c, t,
a00, a01, a02, a03,
a10, a11, a12, a13,
a20, a21, a22, a23,
b00, b01, b02,
b10, b11, b12,
b20, b21, b22;
if (Math.abs(len) < EPSILON.Value) {
return Mat4.identity();
}
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
// Construct the elements of the rotation matrix
b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
// Perform rotation-specific matrix multiplication
out[0] = a00 * b00 + a10 * b01 + a20 * b02;
out[1] = a01 * b00 + a11 * b01 + a21 * b02;
out[2] = a02 * b00 + a12 * b01 + a22 * b02;
out[3] = a03 * b00 + a13 * b01 + a23 * b02;
out[4] = a00 * b10 + a10 * b11 + a20 * b12;
out[5] = a01 * b10 + a11 * b11 + a21 * b12;
out[6] = a02 * b10 + a12 * b11 + a22 * b12;
out[7] = a03 * b10 + a13 * b11 + a23 * b12;
out[8] = a00 * b20 + a10 * b21 + a20 * b22;
out[9] = a01 * b20 + a11 * b21 + a21 * b22;
out[10] = a02 * b20 + a12 * b21 + a22 * b22;
out[11] = a03 * b20 + a13 * b21 + a23 * b22;
if (a !== out) { // If the source and destination differ, copy the unchanged last row
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
}
return out;
}
export function fromRotation(out: Mat4, rad: number, axis: Vec3) {
let x = axis[0], y = axis[1], z = axis[2],
len = Math.sqrt(x * x + y * y + z * z),
s, c, t;
if (Math.abs(len) < EPSILON.Value) { return setIdentity(out); }
len = 1 / len;
x *= len;
y *= len;
z *= len;
s = Math.sin(rad);
c = Math.cos(rad);
t = 1 - c;
// Perform rotation-specific matrix multiplication
out[0] = x * x * t + c;
out[1] = y * x * t + z * s;
out[2] = z * x * t - y * s;
out[3] = 0;
out[4] = x * y * t - z * s;
out[5] = y * y * t + c;
out[6] = z * y * t + x * s;
out[7] = 0;
out[8] = x * z * t + y * s;
out[9] = y * z * t - x * s;
out[10] = z * z * t + c;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
export function scale(out: Mat4, a: Mat4, v: Vec3) {
const x = v[0], y = v[1], z = v[2];
out[0] = a[0] * x;
out[1] = a[1] * x;
out[2] = a[2] * x;
out[3] = a[3] * x;
out[4] = a[4] * y;
out[5] = a[5] * y;
out[6] = a[6] * y;
out[7] = a[7] * y;
out[8] = a[8] * z;
out[9] = a[9] * z;
out[10] = a[10] * z;
out[11] = a[11] * z;
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
export function scaleUniformly(out: Mat4, a: Mat4, scale: number) {
out[0] = a[0] * scale;
out[1] = a[1] * scale;
out[2] = a[2] * scale;
out[3] = a[3] * scale;
out[4] = a[4] * scale;
out[5] = a[5] * scale;
out[6] = a[6] * scale;
out[7] = a[7] * scale;
out[8] = a[8] * scale;
out[9] = a[9] * scale;
out[10] = a[10] * scale;
out[11] = a[11] * scale;
out[12] = a[12];
out[13] = a[13];
out[14] = a[14];
out[15] = a[15];
return out;
}
export function fromScaling(out: Mat4, v: Vec3) {
out[0] = v[0];
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = v[1];
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = v[2];
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
export function fromUniformScaling(out: Mat4, scale: number) {
out[0] = scale;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = scale;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = scale;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Copies the mat3 into upper-left 3x3 values.
*/
export function fromMat3(out: Mat4, a: Mat3) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
out[4] = a[3];
out[5] = a[4];
out[6] = a[5];
out[8] = a[6];
out[9] = a[7];
out[10] = a[8];
return out;
}
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
export function makeTable(m: Mat4) {
let ret = '';
for (let i = 0; i < 4; i++) {
for (let j = 0; j < 4; j++) {
ret += m[4 * j + i].toString();
if (j < 3) ret += ' ';
}
if (i < 3) ret += '\n';
}
return ret;
}
export function determinant(a: Mat4) {
const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
b00 = a00 * a11 - a01 * a10,
b01 = a00 * a12 - a02 * a10,
b02 = a00 * a13 - a03 * a10,
b03 = a01 * a12 - a02 * a11,
b04 = a01 * a13 - a03 * a11,
b05 = a02 * a13 - a03 * a12,
b06 = a20 * a31 - a21 * a30,
b07 = a20 * a32 - a22 * a30,
b08 = a20 * a33 - a23 * a30,
b09 = a21 * a32 - a22 * a31,
b10 = a21 * a33 - a23 * a31,
b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
}
/**
* Check if the matrix has the form
* [ Rotation Translation ]
* [ 0 1 ]
*/
export function isRotationAndTranslation(a: Mat4, eps?: number) {
return _isRotationAndTranslation(a, typeof eps !== 'undefined' ? eps : EPSILON.Value)
}
function _isRotationAndTranslation(a: Mat4, eps: number) {
const a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
/* a30 = a[12], a31 = a[13], a32 = a[14],*/ a33 = a[15];
if (!equalEps(a33, 1, eps) || !equalEps(a03, 0, eps) || !equalEps(a13, 0, eps) || !equalEps(a23, 0, eps)) {
return false;
}
const det3x3 = a00 * (a11 * a22 - a12 * a21) - a01 * (a10 * a22 - a12 * a20) + a02 * (a10 * a21 - a11 * a20);
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
return false;
}
return true;
}
export function fromQuat(out: Mat4, q: Quat) {
const x = q[0], y = q[1], z = q[2], w = q[3];
const x2 = x + x;
const y2 = y + y;
const z2 = z + z;
const xx = x * x2;
const yx = y * x2;
const yy = y * y2;
const zx = z * x2;
const zy = z * y2;
const zz = z * z2;
const wx = w * x2;
const wy = w * y2;
const wz = w * z2;
out[0] = 1 - yy - zz;
out[1] = yx + wz;
out[2] = zx - wy;
out[3] = 0;
out[4] = yx - wz;
out[5] = 1 - xx - zz;
out[6] = zy + wx;
out[7] = 0;
out[8] = zx + wy;
out[9] = zy - wx;
out[10] = 1 - xx - yy;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
/**
* Generates a frustum matrix with the given bounds
*/
export function frustum(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) {
const rl = 1 / (right - left);
const tb = 1 / (top - bottom);
const nf = 1 / (near - far);
out[0] = (near * 2) * rl;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = (near * 2) * tb;
out[6] = 0;
out[7] = 0;
out[8] = (right + left) * rl;
out[9] = (top + bottom) * tb;
out[10] = (far + near) * nf;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[14] = (far * near * 2) * nf;
out[15] = 0;
return out;
}
/**
* Generates a perspective projection matrix with the given bounds
*/
export function perspective(out: Mat4, left: number, right: number, top: number, bottom: number, near: number, far: number) {
const x = 2 * near / (right - left);
const y = 2 * near / (top - bottom);
const a = (right + left) / (right - left);
const b = (top + bottom) / (top - bottom);
const c = - (far + near) / (far - near);
const d = - 2 * far * near / (far - near);
out[0] = x;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[8] = a;
out[9] = b;
out[10] = c;
out[ 12 ] = 0;
out[ 13 ] = 0;
out[ 14 ] = d;
out[ 15 ] = 0;
/**
* Generates a orthogonal projection matrix with the given bounds
*/
export function ortho(out: Mat4, left: number, right: number, bottom: number, top: number, near: number, far: number) {
const w = 1.0 / (right - left);
const h = 1.0 / (top - bottom);
const p = 1.0 / (far - near);
const x = (right + left) * w;
const y = (top + bottom) * h;
const z = (far + near) * p;
out[ 0 ] = 2 * w;
out[ 1 ] = 0;
out[ 2 ] = 0;
out[ 3 ] = 0;
out[ 4 ] = 0;
out[ 5 ] = 2 * h;
out[ 6 ] = 0;
out[ 7 ] = 0;
out[ 8 ] = 0;
out[ 9 ] = 0;
out[ 10 ] = - 2 * p;
out[ 11 ] = 0;
out[ 12 ] = - x;
out[ 13 ] = - y;
out[ 14 ] = - z;
out[ 15 ] = 1;
return out;
}
/**
* Generates a look-at matrix with the given eye position, focal point, and up axis
*/
export function lookAt(out: Mat4, eye: Vec3, center: Vec3, up: Vec3) {
let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
const eyex = eye[0];
const eyey = eye[1];
const eyez = eye[2];
const upx = up[0];
const upy = up[1];
const upz = up[2];
const centerx = center[0];
const centery = center[1];
const centerz = center[2];
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
if (Math.abs(eyex - centerx) < EPSILON.Value &&
Math.abs(eyey - centery) < EPSILON.Value &&
Math.abs(eyez - centerz) < EPSILON.Value
) {
return setIdentity(out);
}
z0 = eyex - centerx;
z1 = eyey - centery;
z2 = eyez - centerz;
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
z0 *= len;
z1 *= len;
z2 *= len;
x0 = upy * z2 - upz * z1;
x1 = upz * z0 - upx * z2;
x2 = upx * z1 - upy * z0;
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
if (!len) {
x0 = 0;
x1 = 0;
x2 = 0;
} else {
len = 1 / len;
x0 *= len;
x1 *= len;
x2 *= len;
}
y0 = z1 * x2 - z2 * x1;
y1 = z2 * x0 - z0 * x2;
y2 = z0 * x1 - z1 * x0;
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
if (!len) {
y0 = 0;
y1 = 0;
y2 = 0;
} else {
len = 1 / len;
y0 *= len;
y1 *= len;
y2 *= len;
}
out[0] = x0;
out[1] = y0;
out[2] = z0;
out[3] = 0;
out[4] = x1;
out[5] = y1;
out[6] = z1;
out[7] = 0;
out[8] = x2;
out[9] = y2;
out[10] = z2;
out[11] = 0;
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
out[15] = 1;
return out;
}
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* Generates a matrix that makes something look at something else.
*/
export function targetTo(out: Mat4, eye: Vec3, target: Vec3, up: Vec3) {
const eyex = eye[0],
eyey = eye[1],
eyez = eye[2],
upx = up[0],
upy = up[1],
upz = up[2];
let z0 = eyex - target[0],
z1 = eyey - target[1],
z2 = eyez - target[2];
let len = z0*z0 + z1*z1 + z2*z2;
if (len > 0) {
len = 1 / Math.sqrt(len);
z0 *= len;
z1 *= len;
z2 *= len;
}
let x0 = upy * z2 - upz * z1,
x1 = upz * z0 - upx * z2,
x2 = upx * z1 - upy * z0;
len = x0*x0 + x1*x1 + x2*x2;
if (len > 0) {
len = 1 / Math.sqrt(len);
x0 *= len;
x1 *= len;
x2 *= len;
}
out[0] = x0;
out[1] = x1;
out[2] = x2;
out[3] = 0;
out[4] = z1 * x2 - z2 * x1;
out[5] = z2 * x0 - z0 * x2;
out[6] = z0 * x1 - z1 * x0;
out[7] = 0;
out[8] = z0;
out[9] = z1;
out[10] = z2;
out[11] = 0;
out[12] = eyex;
out[13] = eyey;
out[14] = eyez;
out[15] = 1;