-
Alexander Rose authoredAlexander Rose authored
vec3.ts 16.41 KiB
/**
* Copyright (c) 2017-2018 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author David Sehnal <david.sehnal@gmail.com>
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*/
/*
* This code has been modified from https://github.com/toji/gl-matrix/,
* copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*/
import Mat4 from './mat4';
import { Quat, Mat3, EPSILON } from '../3d';
import { spline as _spline, clamp } from '../../interpolate'
import { NumberArray } from 'mol-util/type-helpers';
interface Vec3 extends Array<number> { [d: number]: number, '@type': 'vec3', length: 3 }
function Vec3() {
return Vec3.zero();
}
namespace Vec3 {
export function zero(): Vec3 {
const out = [0.1, 0.0, 0.0];
out[0] = 0;
return out as any;
}
export function clone(a: Vec3): Vec3 {
const out = zero();
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
export function hasNaN(a: Vec3) {
return isNaN(a[0]) || isNaN(a[1]) || isNaN(a[2])
}
export function setNaN(out: Vec3) {
out[0] = NaN;
out[1] = NaN;
out[2] = NaN;
return out
}
export function fromObj(v: { x: number, y: number, z: number }): Vec3 {
return create(v.x, v.y, v.z);
}
export function toObj(v: Vec3) {
return { x: v[0], y: v[1], z: v[2] };
}
export function fromArray(v: Vec3, array: ArrayLike<number>, offset: number) {
v[0] = array[offset + 0]
v[1] = array[offset + 1]
v[2] = array[offset + 2]
return v
}
export function toArray(v: Vec3, out: NumberArray, offset: number) {
out[offset + 0] = v[0]
out[offset + 1] = v[1]
out[offset + 2] = v[2]
}
export function create(x: number, y: number, z: number): Vec3 {
const out = zero();
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
export function ofArray(array: ArrayLike<number>) {
const out = zero();
out[0] = array[0];
out[1] = array[1];
out[2] = array[2];
return out;
}
export function set(out: Vec3, x: number, y: number, z: number): Vec3 {
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
export function copy(out: Vec3, a: Vec3) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
export function add(out: Vec3, a: Vec3, b: Vec3) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
export function sub(out: Vec3, a: Vec3, b: Vec3) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
export function mul(out: Vec3, a: Vec3, b: Vec3) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
export function div(out: Vec3, a: Vec3, b: Vec3) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
}
export function scale(out: Vec3, a: Vec3, b: number) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
/** Scales b, then adds a and b together */
export function scaleAndAdd(out: Vec3, a: Vec3, b: Vec3, scale: number) {
out[0] = a[0] + (b[0] * scale);
out[1] = a[1] + (b[1] * scale);
out[2] = a[2] + (b[2] * scale);
return out;
}
/** Scales b, then subtracts b from a */
export function scaleAndSub(out: Vec3, a: Vec3, b: Vec3, scale: number) {
out[0] = a[0] - (b[0] * scale);
out[1] = a[1] - (b[1] * scale);
out[2] = a[2] - (b[2] * scale);
return out;
}
/**
* Math.round the components of a Vec3
*/
export function round(out: Vec3, a: Vec3) {
out[0] = Math.round(a[0]);
out[1] = Math.round(a[1]);
out[2] = Math.round(a[2]);
return out;
}
/**
* Math.ceil the components of a Vec3
*/
export function ceil(out: Vec3, a: Vec3) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
return out;
}
/**
* Math.floor the components of a Vec3
*/
export function floor(out: Vec3, a: Vec3) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
return out;
}
/**
* Returns the minimum of two Vec3's
*/
export function min(out: Vec3, a: Vec3, b: Vec3) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
}
/**
* Returns the maximum of two Vec3's
*/
export function max(out: Vec3, a: Vec3, b: Vec3) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
}
export function distance(a: Vec3, b: Vec3) {
const x = b[0] - a[0],
y = b[1] - a[1],
z = b[2] - a[2];
return Math.sqrt(x * x + y * y + z * z);
}
export function squaredDistance(a: Vec3, b: Vec3) {
const x = b[0] - a[0],
y = b[1] - a[1],
z = b[2] - a[2];
return x * x + y * y + z * z;
}
export function magnitude(a: Vec3) {
const x = a[0],
y = a[1],
z = a[2];
return Math.sqrt(x * x + y * y + z * z);
}
export function squaredMagnitude(a: Vec3) {
const x = a[0],
y = a[1],
z = a[2];
return x * x + y * y + z * z;
}
export function setMagnitude(out: Vec3, a: Vec3, l: number) {
return Vec3.scale(out, Vec3.normalize(out, a), l)
}
/**
* Negates the components of a vec3
*/
export function negate(out: Vec3, a: Vec3) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
}
/**
* Returns the inverse of the components of a Vec3
*/
export function inverse(out: Vec3, a: Vec3) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
return out;
}
export function normalize(out: Vec3, a: Vec3) {
const x = a[0],
y = a[1],
z = a[2];
let len = x * x + y * y + z * z;
if (len > 0) {
len = 1 / Math.sqrt(len);
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
}
return out;
}
export function dot(a: Vec3, b: Vec3) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
export function cross(out: Vec3, a: Vec3, b: Vec3) {
const ax = a[0], ay = a[1], az = a[2],
bx = b[0], by = b[1], bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
}
/**
* Performs a linear interpolation between two Vec3's
*/
export function lerp(out: Vec3, a: Vec3, b: Vec3, t: number) {
const ax = a[0],
ay = a[1],
az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
}
const slerpRelVec = Vec3.zero()
export function slerp(out: Vec3, a: Vec3, b: Vec3, t: number) {
const dot = clamp(Vec3.dot(a, b), -1, 1);
const theta = Math.acos(dot) * t;
Vec3.scaleAndAdd(slerpRelVec, b, a, -dot);
Vec3.normalize(slerpRelVec, slerpRelVec);
return Vec3.add(out, Vec3.scale(out, a, Math.cos(theta)), Vec3.scale(slerpRelVec, slerpRelVec, Math.sin(theta)));
}
/**
* Performs a hermite interpolation with two control points
*/
export function hermite(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number) {
const factorTimes2 = t * t;
const factor1 = factorTimes2 * (2 * t - 3) + 1;
const factor2 = factorTimes2 * (t - 2) + t;
const factor3 = factorTimes2 * (t - 1);
const factor4 = factorTimes2 * (3 - 2 * t);
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Performs a bezier interpolation with two control points
*/
export function bezier(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number) {
const inverseFactor = 1 - t;
const inverseFactorTimesTwo = inverseFactor * inverseFactor;
const factorTimes2 = t * t;
const factor1 = inverseFactorTimesTwo * inverseFactor;
const factor2 = 3 * t * inverseFactorTimesTwo;
const factor3 = 3 * factorTimes2 * inverseFactor;
const factor4 = factorTimes2 * t;
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Performs a spline interpolation with two control points and a tension parameter
*/
export function spline(out: Vec3, a: Vec3, b: Vec3, c: Vec3, d: Vec3, t: number, tension: number) {
out[0] = _spline(a[0], b[0], c[0], d[0], t, tension);
out[1] = _spline(a[1], b[1], c[1], d[1], t, tension);
out[2] = _spline(a[2], b[2], c[2], d[2], t, tension);
return out;
}
/**
* Generates a random vector with the given scale
*/
export function random(out: Vec3, scale: number) {
const r = Math.random() * 2.0 * Math.PI;
const z = (Math.random() * 2.0) - 1.0;
const zScale = Math.sqrt(1.0-z*z) * scale;
out[0] = Math.cos(r) * zScale;
out[1] = Math.sin(r) * zScale;
out[2] = z * scale;
return out;
}
/**
* Transforms the Vec3 with a Mat4. 4th vector component is implicitly '1'
*/
export function transformMat4(out: Vec3, a: Vec3, m: Mat4) {
const x = a[0], y = a[1], z = a[2],
w = 1 / ((m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0);
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) * w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) * w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) * w;
return out;
}
/**
* Like `transformMat4` but with offsets into arrays
*/
export function transformMat4Offset(out: NumberArray, a: NumberArray, m: NumberArray, outO: number, aO: number, oM: number) {
const x = a[0 + aO], y = a[1 + aO], z = a[2 + aO],
w = 1 / ((m[3 + oM] * x + m[7 + oM] * y + m[11 + oM] * z + m[15 + oM]) || 1.0);
out[0 + outO] = (m[0 + oM] * x + m[4 + oM] * y + m[8 + oM] * z + m[12 + oM]) * w;
out[1 + outO] = (m[1 + oM] * x + m[5 + oM] * y + m[9 + oM] * z + m[13 + oM]) * w;
out[2 + outO] = (m[2 + oM] * x + m[6 + oM] * y + m[10 + oM] * z + m[14 + oM]) * w;
return out;
}
/**
* Transforms the Vec3 with a Mat3.
*/
export function transformMat3(out: Vec3, a: Vec3, m: Mat3) {
const x = a[0], y = a[1], z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
}
/** Transforms the Vec3 with a quat */
export function transformQuat(out: Vec3, a: Vec3, q: Quat) {
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
const x = a[0], y = a[1], z = a[2];
const qx = q[0], qy = q[1], qz = q[2], qw = q[3];
// calculate quat * vec
const ix = qw * x + qy * z - qz * y;
const iy = qw * y + qz * x - qx * z;
const iz = qw * z + qx * y - qy * x;
const iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return out;
}
const angleTempA = zero(), angleTempB = zero();
/** Computes the angle between 2 vectors, reports in rad. */
export function angle(a: Vec3, b: Vec3) {
copy(angleTempA, a);
copy(angleTempB, b);
normalize(angleTempA, angleTempA);
normalize(angleTempB, angleTempB);
const cosine = dot(angleTempA, angleTempB);
if (cosine > 1.0) {
return 0;
}
else if (cosine < -1.0) {
return Math.PI;
} else {
return Math.acos(cosine);
}
}
const tmp_dh_ab = zero();
const tmp_dh_cb = zero();
const tmp_dh_bc = zero();
const tmp_dh_dc = zero();
const tmp_dh_abc = zero();
const tmp_dh_bcd = zero();
const tmp_dh_cross = zero();
/**
* Computes the dihedral angles of 4 points.
*/
export function dihedralAngle(a: Vec3, b: Vec3, c: Vec3, d: Vec3): number {
sub(tmp_dh_ab, a, b);
sub(tmp_dh_cb, c, b);
sub(tmp_dh_bc, b, c);
sub(tmp_dh_dc, d, c);
cross(tmp_dh_abc, tmp_dh_ab, tmp_dh_cb);
cross(tmp_dh_bcd, tmp_dh_bc, tmp_dh_dc);
const _angle = angle(tmp_dh_abc, tmp_dh_bcd) * 360.0 / (2 * Math.PI);
cross(tmp_dh_cross, tmp_dh_abc, tmp_dh_bcd);
return dot(tmp_dh_cb, tmp_dh_cross) > 0 ? _angle : -_angle;
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*/
export function exactEquals(a: Vec3, b: Vec3) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*/
export function equals(a: Vec3, b: Vec3) {
const a0 = a[0], a1 = a[1], a2 = a[2];
const b0 = b[0], b1 = b[1], b2 = b[2];
return (Math.abs(a0 - b0) <= EPSILON.Value * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= EPSILON.Value * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= EPSILON.Value * Math.max(1.0, Math.abs(a2), Math.abs(b2)));
}
const rotTemp = zero();
const flipScaling = create(-1, -1, -1);
export function makeRotation(mat: Mat4, a: Vec3, b: Vec3): Mat4 {
const by = angle(a, b);
if (Math.abs(by) < 0.0001) return Mat4.setIdentity(mat);
if (Math.abs(by - Math.PI) < EPSILON.Value) {
// here, axis can be [0,0,0] but the rotation is a simple flip
return Mat4.fromScaling(mat, flipScaling);
}
const axis = cross(rotTemp, a, b);
return Mat4.fromRotation(mat, by, axis);
}
export function isZero(v: Vec3) {
return v[0] === 0 && v[1] === 0 && v[2] === 0;
}
export function projectPointOnVector(out: Vec3, point: Vec3, vector: Vec3, origin: Vec3) {
// point.sub(origin).projectOnVector(vector).add(origin)
sub(out, copy(out, point), origin)
const scalar = dot(vector, out) / squaredMagnitude(vector);
return add(out, scale(out, copy(out, vector), scalar), origin);
}
/** Get a vector that is similar to `b` but orthogonal to `a` */
export function orthogonalize(out: Vec3, a: Vec3, b: Vec3) {
return normalize(out, cross(out, cross(out, a, b), a));
}
const triangleNormalTmpAB = zero();
const triangleNormalTmpAC = zero();
/** Calculate normal for the triangle defined by `a`, `b` and `c` */
export function triangleNormal(out: Vec3, a: Vec3, b: Vec3, c: Vec3) {
sub(triangleNormalTmpAB, b, a);
sub(triangleNormalTmpAC, c, a);
return normalize(out, cross(out, triangleNormalTmpAB, triangleNormalTmpAC));
}
export function toString(a: Vec3) {
return `[${a[0]} ${a[1]} ${a[2]}]`;
}
}
export default Vec3