Skip to content
Snippets Groups Projects
Select Git revision
  • e8a09e81f30e1ab8e1a18c2d100b9e87e5e37e54
  • master default protected
  • rednatco-v2
  • rednatco
  • test
  • ntc-tube-uniform-color
  • ntc-tube-missing-atoms
  • restore-vertex-array-per-program
  • watlas2
  • dnatco_new
  • cleanup-old-nodejs
  • webmmb
  • fix_auth_seq_id
  • update_deps
  • ext_dev
  • ntc_balls
  • nci-2
  • plugin
  • bugfix-0.4.5
  • nci
  • servers
  • v0.5.0-dev.1
  • v0.4.5
  • v0.4.4
  • v0.4.3
  • v0.4.2
  • v0.4.1
  • v0.4.0
  • v0.3.12
  • v0.3.11
  • v0.3.10
  • v0.3.9
  • v0.3.8
  • v0.3.7
  • v0.3.6
  • v0.3.5
  • v0.3.4
  • v0.3.3
  • v0.3.2
  • v0.3.1
  • v0.3.0
41 results

create-table.ts

Blame
  • create-table.ts 10.85 KiB
    #!/usr/bin/env node
    /**
     * Copyright (c) 2018-2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
     *
     * @author Alexander Rose <alexander.rose@weirdbyte.de>
     */
    
    import * as argparse from 'argparse';
    import * as util from 'util';
    import * as path from 'path';
    import * as fs from 'fs';
    require('util.promisify').shim();
    const writeFile = util.promisify(fs.writeFile);
    
    import { Database, Table, DatabaseCollection } from '../../mol-data/db';
    import { CCD_Schema } from '../../mol-io/reader/cif/schema/ccd';
    import { SetUtils } from '../../mol-util/set';
    import { DefaultMap } from '../../mol-util/map';
    import { mmCIF_chemCompBond_schema } from '../../mol-io/reader/cif/schema/mmcif-extras';
    import { ccd_chemCompAtom_schema } from '../../mol-io/reader/cif/schema/ccd-extras';
    import { DefaultDataOptions, ensureDataAvailable, getEncodedCif, readCCD, readPVCD } from './util';
    
    type CCB = Table<CCD_Schema['chem_comp_bond']>
    type CCA = Table<CCD_Schema['chem_comp_atom']>
    
    function ccbKey(compId: string, atomId1: string, atomId2: string) {
        return atomId1 < atomId2 ? `${compId}:${atomId1}-${atomId2}` : `${compId}:${atomId2}-${atomId1}`;
    }
    
    function ccaKey(compId: string, atomId: string) {
        return `${compId}:${atomId}`;
    }
    
    function addChemCompBondToSet(set: Set<string>, ccb: CCB) {
        for (let i = 0, il = ccb._rowCount; i < il; ++i) {
            set.add(ccbKey(ccb.comp_id.value(i), ccb.atom_id_1.value(i), ccb.atom_id_2.value(i)));
        }
        return set;
    }
    
    function addChemCompAtomToSet(set: Set<string>, cca: CCA) {
        for (let i = 0, il = cca._rowCount; i < il; ++i) {
            set.add(ccaKey(cca.comp_id.value(i), cca.atom_id.value(i)));
        }
        return set;
    }
    
    function checkAddingBondsFromPVCD(pvcd: DatabaseCollection<CCD_Schema>) {
        const ccbSetByParent = DefaultMap<string, Set<string>>(() => new Set());
    
        for (const k in pvcd) {
            const { chem_comp, chem_comp_bond } = pvcd[k];
            if (chem_comp_bond._rowCount) {
                const parentIds = chem_comp.mon_nstd_parent_comp_id.value(0);
                if (parentIds.length === 0) {
                    const set = ccbSetByParent.getDefault(chem_comp.id.value(0));
                    addChemCompBondToSet(set, chem_comp_bond);
                } else {
                    for (let i = 0, il = parentIds.length; i < il; ++i) {
                        const parentId = parentIds[i];
                        const set = ccbSetByParent.getDefault(parentId);
                        addChemCompBondToSet(set, chem_comp_bond);
                    }
                }
            }
        }
    
        for (const k in pvcd) {
            const { chem_comp, chem_comp_atom, chem_comp_bond } = pvcd[k];
            if (chem_comp_bond._rowCount) {
                const parentIds = chem_comp.mon_nstd_parent_comp_id.value(0);
                if (parentIds.length > 0) {
                    for (let i = 0, il = parentIds.length; i < il; ++i) {
                        const entryBonds = addChemCompBondToSet(new Set<string>(), chem_comp_bond);
                        const entryAtoms = addChemCompAtomToSet(new Set<string>(), chem_comp_atom);
                        const extraBonds = SetUtils.difference(ccbSetByParent.get(parentIds[i])!, entryBonds);
                        extraBonds.forEach(bk => {
                            const [a1, a2] = bk.split('|');
                            if (entryAtoms.has(a1) && entryAtoms.has(a2)) {
                                console.error(`Adding all PVCD bonds would wrongly add bond ${bk} for ${k}`);
                            }
                        });
                    }
                }
            }
        }
    }
    
    function checkAddingAtomsFromPVCD(pvcd: DatabaseCollection<CCD_Schema>) {
        const ccaSetByParent = DefaultMap<string, Set<string>>(() => new Set());
    
        for (const k in pvcd) {
            const { chem_comp, chem_comp_atom } = pvcd[k];
            if (chem_comp_atom._rowCount) {
                const parentIds = chem_comp.mon_nstd_parent_comp_id.value(0);
                if (parentIds.length === 0) {
                    const set = ccaSetByParent.getDefault(chem_comp.id.value(0));
                    addChemCompAtomToSet(set, chem_comp_atom);
                } else {
                    for (let i = 0, il = parentIds.length; i < il; ++i) {
                        const parentId = parentIds[i];
                        const set = ccaSetByParent.getDefault(parentId);
                        addChemCompAtomToSet(set, chem_comp_atom);
                    }
                }
            }
        }
    }
    
    async function createBonds(
        ccd: DatabaseCollection<CCD_Schema>,
        pvcd: DatabaseCollection<CCD_Schema>,
        atomsRequested: boolean
    ) {
        const ccbSet = new Set<string>();
    
        const comp_id: string[] = [];
        const atom_id_1: string[] = [];
        const atom_id_2: string[] = [];
        const value_order: typeof mmCIF_chemCompBond_schema['value_order']['T'][] = [];
        const pdbx_aromatic_flag: typeof mmCIF_chemCompBond_schema['pdbx_aromatic_flag']['T'][] = [];
        const pdbx_stereo_config: typeof mmCIF_chemCompBond_schema['pdbx_stereo_config']['T'][] = [];
        const molstar_protonation_variant: string[] = [];
    
        function addBonds(compId: string, ccb: CCB, protonationVariant: boolean) {
            for (let i = 0, il = ccb._rowCount; i < il; ++i) {
                const atomId1 = ccb.atom_id_1.value(i);
                const atomId2 = ccb.atom_id_2.value(i);
                const k = ccbKey(compId, atomId1, atomId2);
                if (!ccbSet.has(k)) {
                    atom_id_1.push(atomId1);
                    atom_id_2.push(atomId2);
                    comp_id.push(compId);
                    value_order.push(ccb.value_order.value(i));
                    pdbx_aromatic_flag.push(ccb.pdbx_aromatic_flag.value(i));
                    pdbx_stereo_config.push(ccb.pdbx_stereo_config.value(i));
                    molstar_protonation_variant.push(protonationVariant ? 'Y' : 'N');
                    ccbSet.add(k);
                }
            }
        }
    
        // check adding bonds from PVCD
        checkAddingBondsFromPVCD(pvcd);
    
        // add bonds from PVCD
        for (const k in pvcd) {
            const { chem_comp, chem_comp_bond } = pvcd[k];
            if (chem_comp_bond._rowCount) {
                const parentIds = chem_comp.mon_nstd_parent_comp_id.value(0);
                if (parentIds.length === 0) {
                    addBonds(chem_comp.id.value(0), chem_comp_bond, false);
                } else {
                    for (let i = 0, il = parentIds.length; i < il; ++i) {
                        addBonds(parentIds[i], chem_comp_bond, true);
                    }
                }
            }
        }
    
        // add bonds from CCD
        for (const k in ccd) {
            const { chem_comp, chem_comp_bond } = ccd[k];
            if (chem_comp_bond._rowCount) {
                addBonds(chem_comp.id.value(0), chem_comp_bond, false);
            }
        }
    
        const bondTable = Table.ofArrays(mmCIF_chemCompBond_schema, {
            comp_id, atom_id_1, atom_id_2, value_order,
            pdbx_aromatic_flag, pdbx_stereo_config, molstar_protonation_variant
        });
    
        const bondDatabase = Database.ofTables(
            CCB_TABLE_NAME,
            { chem_comp_bond: mmCIF_chemCompBond_schema },
            { chem_comp_bond: bondTable }
        );
    
        return { bonds: bondDatabase, atoms: atomsRequested ? createAtoms(ccd, pvcd) : void 0 };
    }
    
    function createAtoms(ccd: DatabaseCollection<CCD_Schema>, pvcd: DatabaseCollection<CCD_Schema>) {
        const ccaSet = new Set<string>();
    
        const comp_id: string[] = [];
        const atom_id: string[] = [];
        const charge: number[] = [];
        const pdbx_stereo_config: typeof CCD_Schema.chem_comp_atom['pdbx_stereo_config']['T'][] = [];
    
        function addAtoms(compId: string, cca: CCA) {
            for (let i = 0, il = cca._rowCount; i < il; ++i) {
                const atomId = cca.atom_id.value(i);
                const k = ccaKey(compId, atomId);
                if (!ccaSet.has(k)) {
                    atom_id.push(atomId);
                    comp_id.push(compId);
                    charge.push(cca.charge.value(i));
                    pdbx_stereo_config.push(cca.pdbx_stereo_config.value(i));
                    ccaSet.add(k);
                }
            }
        }
    
        // check adding atoms from PVCD
        checkAddingAtomsFromPVCD(pvcd);
    
        // add atoms from PVCD
        for (const k in pvcd) {
            const { chem_comp, chem_comp_atom } = pvcd[k];
            if (chem_comp_atom._rowCount) {
                const parentIds = chem_comp.mon_nstd_parent_comp_id.value(0);
                if (parentIds.length === 0) {
                    addAtoms(chem_comp.id.value(0), chem_comp_atom);
                } else {
                    for (let i = 0, il = parentIds.length; i < il; ++i) {
                        addAtoms(parentIds[i], chem_comp_atom);
                    }
                }
            }
        }
    
        // add atoms from CCD
        for (const k in ccd) {
            const { chem_comp, chem_comp_atom } = ccd[k];
            if (chem_comp_atom._rowCount) {
                addAtoms(chem_comp.id.value(0), chem_comp_atom);
            }
        }
    
        const atomTable = Table.ofArrays(ccd_chemCompAtom_schema, {
            comp_id, atom_id, charge, pdbx_stereo_config
        });
    
        return Database.ofTables(
            CCA_TABLE_NAME,
            { chem_comp_atom: ccd_chemCompAtom_schema },
            { chem_comp_atom: atomTable }
        );
    }
    
    async function run(out: string, binary = false, options = DefaultDataOptions, ccaOut?: string) {
        await ensureDataAvailable(options);
        const ccd = await readCCD();
        const pvcd = await readPVCD();
    
        const { bonds, atoms } = await createBonds(ccd, pvcd, !!ccaOut);
    
        const ccbCif = getEncodedCif(CCB_TABLE_NAME, bonds, binary);
        if (!fs.existsSync(path.dirname(out))) {
            fs.mkdirSync(path.dirname(out));
        }
        writeFile(out, ccbCif);
    
        if (!!ccaOut) {
            const ccaCif = getEncodedCif(CCA_TABLE_NAME, atoms, binary);
            if (!fs.existsSync(path.dirname(ccaOut))) {
                fs.mkdirSync(path.dirname(ccaOut));
            }
            writeFile(ccaOut, ccaCif);
        }
    }
    
    const CCB_TABLE_NAME = 'CHEM_COMP_BONDS';
    const CCA_TABLE_NAME = 'CHEM_COMP_ATOMS';
    
    const parser = new argparse.ArgumentParser({
        add_help: true,
        description: 'Create a cif file with one big table of all chem_comp_bond entries from the CCD and PVCD.'
    });
    parser.add_argument('out', {
        help: 'Generated file output path.'
    });
    parser.add_argument('--forceDownload', '-f', {
        action: 'store_true',
        help: 'Force download of CCD and PVCD.'
    });
    parser.add_argument('--binary', '-b', {
        action: 'store_true',
        help: 'Output as BinaryCIF.'
    });
    parser.add_argument('--ccaOut', '-a', {
        help: 'Optional generated file output path for chem_comp_atom data.',
        required: false
    });
    parser.add_argument('--ccdUrl', '-c', {
        help: 'Fetch the CCD from a custom URL. This forces download of the CCD.',
        required: false
    });
    parser.add_argument('--pvcdUrl', '-p', {
        help: 'Fetch the PVCD from a custom URL. This forces download of the PVCD.',
        required: false
    });
    interface Args {
        out: string,
        forceDownload?: boolean,
        binary?: boolean,
        ccaOut?: string,
        ccdUrl?: string,
        pvcdUrl?: string
    }
    const args: Args = parser.parse_args();
    
    run(args.out, args.binary, { forceDownload: args.forceDownload, ccdUrl: args.ccdUrl, pvcdUrl: args.pvcdUrl }, args.ccaOut);